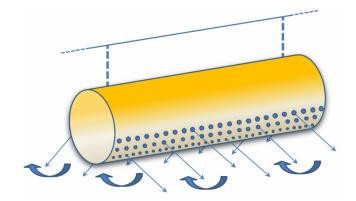
TEXI-JET


5.3.1

TEXI-JET : Diffusion à haute vitesse par rangées de perforations

Principe:

La diffusion se fait à vitesse généralement élevée ($7 < V_s < 15$ m/s maximum) au passage de perforations, dont le diamètre et le positionnement sur la gaine sont définis en fonction du projet étudié.

Basée sur le principe du mélange, la technique consiste ici à impulser une grande quantité de mini jets d'air coniques qui par venturi vont entraîner une grande quantité d'air secondaire et ainsi provoquer un mélange très efficace.

Applications:

Climatisation ("chaud et froid") de bâtiments de grand volume, commerciaux ou recevant du public

grandes et moyennes surfaces de vente (GMS), halls d'exposition... auditorium, amphithéâtres, salles de spectacles, salles de concerts... salles de sports, gymnases, salles polyvalentes...

<u>Chauffage et/ ou rafraîchissement de locaux de stockage industriels de grande hauteu</u>nécessitant une température homogène et contrôlée en tout point du volume.

<u>Conditionnement d'ambiance des locaux industriels de production sensible</u>, exigeants sur le plan des contrôles des vitesses résiduelles et où les apports thermiques sont élevés :

imprimeries électronique métallurgie injection plastique

Avantages

Taux d'induction très élevé (> 20). Maîtrise des vitesses d'air résiduelles et excellent confort même avec de forts T.

Efficacité garantie pour le chauffage de locaux de grande hauteur (H > 8 m).

Idéal pour les besoins de chauffage et climat sation des locaux dont 4 m < H < 8 m où l'on cherche confort et homogénéité

Besoins en chaud jusqu'à 200 W/m² et en froic jusqu'à 300 W/m² Débit jusqu'à 450 m³/h/ml.

Les gaines à induction ne s'encrassent pas

Limites d'utilisation :

A éviter pour les locaux de faible hauteur (H < 4 m).

Le dimensionnement du réseau, le calcul des gaines (nombre, longueur, plan de perforations) doit être étudié à la source du projet.

TEXI-JET

Tissus possibles:

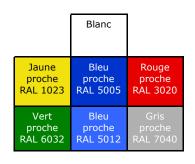

Tous les tissus étanches ou peu perméables (porosité < 50 m ³/h/m² à 120 Pa) laissant la prédominance de la diffusion au niveau des perforations disposées sur la gaine. La plupart des tissus polyester peu perméables ainsi que les tissus techniques étanches comme le PVC et le tissu de verre M0 peuvent être utilisés.

Tableau 1

Référence F2A	Nature du tissu	Poids g/m²	Couleur standard	Perméabilité sous 120 Pa	Particularités
Pas de classement au feu					
PNC/E - 80	Polyester non classé au feu	80	Blanc*	20	Lavable en machine selon nos recommandations
PNC/E - 160	Polyester non classé au feu	160	Blanc	20	Lavable en machine selon nos recommandations
PVC - NC	Trame polyester enduction PVC double face non classé	680	Bleu	0	Lavable au jet haute pression
Classement au f	eu M1				
PM1/E - 80	Polyester M1	80	Blanc*	17	Lavable en machine selon nos recommandations
PM1/E - 160	Polyester M1	160	Blanc**	20	Lavable en machine selon nos recommandations
PM1/E - 340	Polyester M1	340	Blanc	50	Lavable en machine selon nos recommandations
PM1/E-AS	Polyester M1 antistatique	130	Blanc	97	Antistatique
PM1/E-AB	Polyester M1 antibactérien	102	Blanc	36	Antibactérien
PVC - M1	Trame polyester enduction PVC double face M1	570	Blanc***	0	Lavable au jet haute pression
Classement au feu M0					
VPU 550 - M0	Tissu de verre enduit polyuré thane double face	455	Gris Blanc Noir	<1	Dépoussiérable mais non lavable

Blanc	Noir	Orange proche RAL 2011
Jaune	Bleu	Rouge
proche	proche	proche
RAL 1023	RAL 5005	RAL 3020
Vert	Bleu	Gris
proche	proche	proche
RAL 6032	RAL 5012	RAL 7040

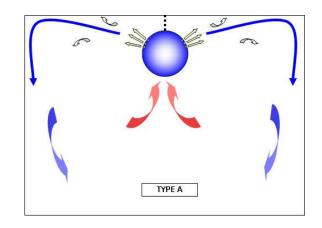
^{*}Couleurs standard Polyester 80g

^{**}Couleurs standard PM1 160g

***Couleurs standard PVC M1

TEXI-JET

5.3.3

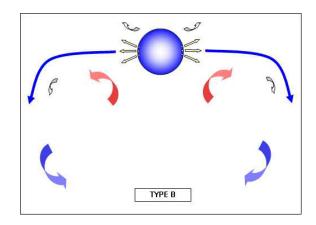

Chaque projet est spécifique. Notre équipe d'ingénieurs et techniciens, formée à nos logiciels de simulation aéraulique est à même de réaliser une étude au cas par cas. Bien dimensionner et disposer les perforations est essentiel pour diffuser l'air correctement en fonction des données particulières de chaque projet. Les préconisations ci après donnent une première orientation, qui doit être affinée (angles exacts à définir) et enrichie.

Type de diffusion en fonction du mode climatique

Type A:

Axe moyen des perforations à $10h10 (+30^{\circ})$ Différence de température ($T = |T_{\text{soufflage}} \quad T_{\text{ambiante}}|$) selon le mode climatique

Mode climatique				
Rafraîchissement	Chauffage	Hauteur		
T < 8°C	T < 5°C	H < 5m		

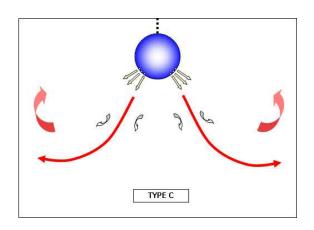

Type B:

Axe moyen des perforations à 9h15 (0°)

Différence de température

($T = |T_{soufflage} - T_{ambiante}|$) selon le mode climatique

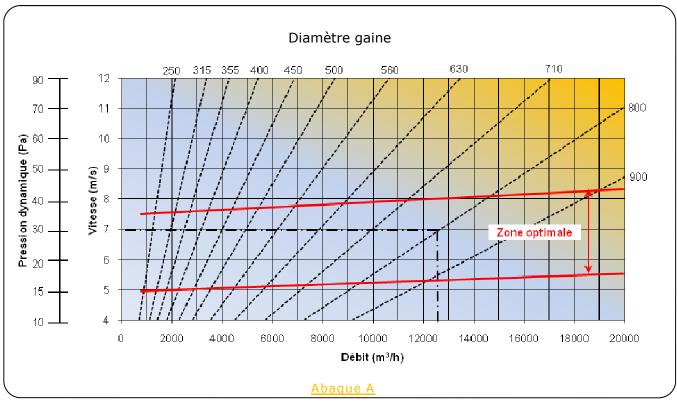
Mode climatique				
Rafraîchissement	Chauffage	Hauteur		
T > 8°C	T > 5°C	H < 8m		

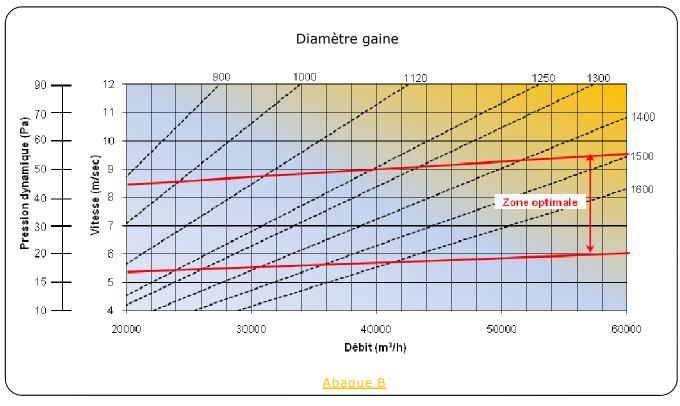


Type C:

Axe moyen des perforations à 8h20 (- 30°) Différence de température

 $(T = |T_{soufflage} T_{ambiante}|)$ selon le mode climatique

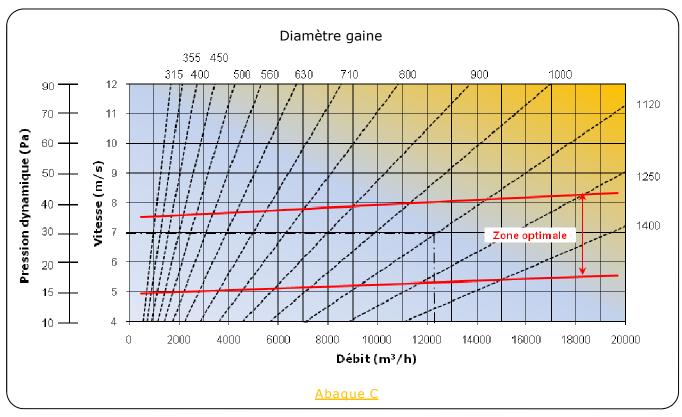

Mode climatique				
Rafraîchissement	Chauffage	Hauteur		
T > 12°C	T > 10°C	H > 8m		

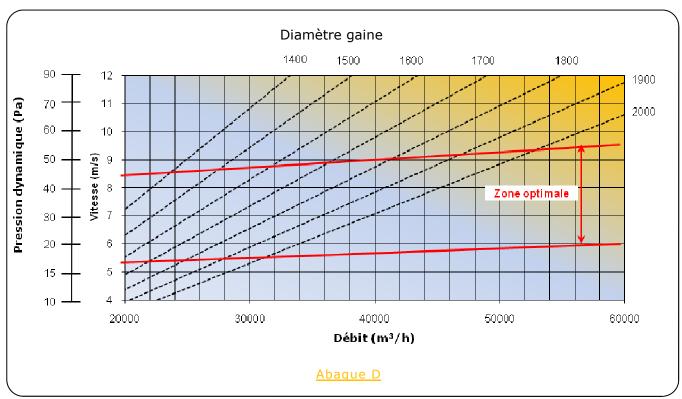


TEXI-JET

Abaques de sélection pour une gaine circulaire

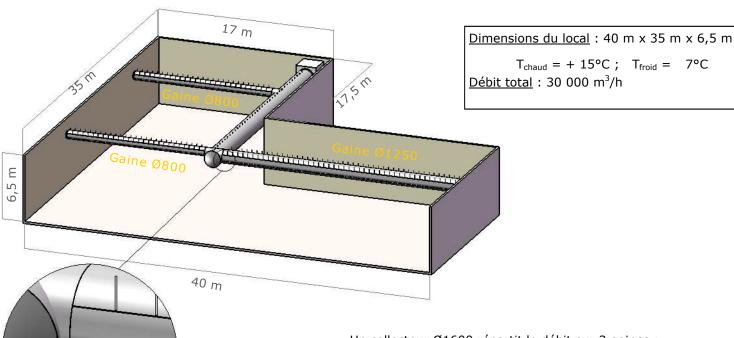
Abaques A & B - Calcul du diamètre en fonction du débit à l'entrée de la gaine




TEXI-JET

5.3.5

Abaques de sélection pour une gaine 1/2 circulaire


Abaques C & D - Calcul du diamètre en fonction du débit à l'entrée de la gaine

TEXI-JET 5.3.6

Exemple de dimensionnement de gaines textiles haute induction TEXI-JET:

Un collecteur Ø1600 répartit le débit sur 3 gaines :

2 gaines Ø800 + 1 gaine Ø1250 (selon abaques C et D p 5.3.4)

<u>Débit par gaine</u>: gaines Ø800 = 6 040 m³/h par gaine

gaine \emptyset 1250 = 17 920 m³/h

 $T_{chaud} = + 15$ °C; $T_{froid} = 7$ °C

Longueur de chaque gaine : gaines $\emptyset 800 = 13,7$ m chacune

> gaine Ø1250 = 23,7 mcollecteur Ø1600 = 24,5 m

4 rangées de perforations de chaque côté (axe médian à -50° vers le bas par rapport à l'axe horizontal)

Vitesse d'éjection d'air au niveau des perforations $V_s = 12,6 \text{ m/s}$

Répartition du débit par gaine diffusante :

177777778778

1. Calcul de la surface à traiter par gaine : S_q

Rangées de perforations

 $S_a = Longueur \times Portée$

2. Calcul de la surface totale à traiter : St

$$S_t = \Sigma S_q$$

3. Calcul du "débit surfacique moyen" : Qs

$$Q_s = Q_t/S_t$$

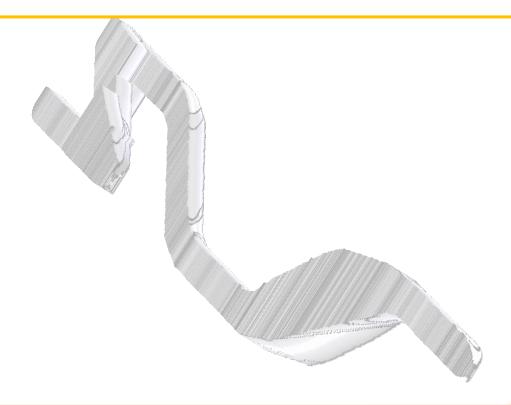
4. Débit par gaine diffusante : Qg

$$Q_g = Q_s \times S_g$$

La pression totale disponible du ventilateur Pt est donnée par la formule :

$$P_t = P_{stat} + P_{dyn}$$

Avec:


 P_{stat} = Perte de charge de l'air due à son passage à travers les perforations. Elle dépend de la vitesse de diffusion de l'air (ici 9,7 m/s)

 P_{dyn} = Pression dynamique de l'air à son entrée dans la gaine (cf. Abaques de sélection A à D) ici P_{dyn} = 42 Pa.

Gaine Textile

Préconisations d'installation - Précautions à prendre

- A Une suspension des gaines esthétique, discrète et appropriée : En fonction des critères d'es thétique et d'intégration dans l'architecture, opter pour une suspension simple ou double, par câbles ou par rails. Voir nos notices de montage et supportage
- B Une filtration efficace en amont de la gaine textile— Quelle que soit la fréquence de lavage, il est souhaitable d'installer une filtration d'air efficace :
- Texi-Soft & Texi-Perf : Prévoir F7 minimum selon la norme européenne EN 1779. Si la pollution générée est élevée, préférer une filtration F9
- Texi-Pulse & Texi-Jet : Prévoir F6 minimum selon la norme européenne EN 1779. Si la pollution générée est élevée, préférer une filtration F8 (F7 minimum)
- C Une mise en pression progressive des gaines lors du démarrage de la ventilation Les gai nes sont sensibles aux « coups de bélier » provoqués par une mise en régime trop abrupte. Prévoir un variateur de fréquence à l'alimentation du moteur du ventilateur, ou un registre motorisé à ouverture progressive avec ressort de rappel (voir notre gamme de registres LTI)
- D Un entretien régulier des gaines Suivant le taux d'encrassement des gaines (niveau de la filtra tion en amont, niveau de pollution de l'air repris,...) envisager un planning de nettoyage régulier : 1 fois par an minimum pour les gaines en tissu polyester, 1 fois tous les 3 ans pour les gaines à base de tissus techniques, voire plus si la pollution est élevée. Voir nos notices d'entretien et de nettoyage

